/* * Copyright (c) 2006-2014 Erik Ekman , * 2006-2009 Bjorn Andersson * 2013 Peter Sagerson * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #ifdef DARWIN #include #include #include #include #include #include #endif #ifndef IFCONFIGPATH #define IFCONFIGPATH "PATH=/sbin:/bin " #endif #ifndef ROUTEPATH #define ROUTEPATH "PATH=/sbin:/bin " #endif #ifdef WINDOWS32 #include "windows.h" #include static HANDLE dev_handle; static struct tun_data data; static void get_name(char *ifname, int namelen, char *dev_name); #define TAP_CONTROL_CODE(request,method) CTL_CODE(FILE_DEVICE_UNKNOWN, request, method, FILE_ANY_ACCESS) #define TAP_IOCTL_CONFIG_TUN TAP_CONTROL_CODE(10, METHOD_BUFFERED) #define TAP_IOCTL_SET_MEDIA_STATUS TAP_CONTROL_CODE(6, METHOD_BUFFERED) #define TAP_ADAPTER_KEY "SYSTEM\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002BE10318}" #define NETWORK_KEY "SYSTEM\\CurrentControlSet\\Control\\Network\\{4D36E972-E325-11CE-BFC1-08002BE10318}" #define TAP_DEVICE_SPACE "\\\\.\\Global\\" #define TAP_VERSION_ID_0801 "tap0801" #define TAP_VERSION_ID_0901 "tap0901" #define TAP_VERSION_ID_0901_ROOT "root\\tap0901" #define KEY_COMPONENT_ID "ComponentId" #define NET_CFG_INST_ID "NetCfgInstanceId" #else #include #include #include #define TUN_MAX_TRY 50 #endif #include "tun.h" #include "common.h" static char if_name[250]; #ifdef LINUX #include #include #include int open_tun(const char *tun_device) { int i; int tun_fd; struct ifreq ifreq; #ifdef ANDROID char *tunnel = "/dev/tun"; #else char *tunnel = "/dev/net/tun"; #endif if ((tun_fd = open(tunnel, O_RDWR)) < 0) { warn("open_tun: %s", tunnel); return -1; } memset(&ifreq, 0, sizeof(ifreq)); ifreq.ifr_flags = IFF_TUN; if (tun_device != NULL) { strncpy(ifreq.ifr_name, tun_device, IFNAMSIZ); ifreq.ifr_name[IFNAMSIZ-1] = '\0'; strncpy(if_name, tun_device, sizeof(if_name)); if_name[sizeof(if_name)-1] = '\0'; if (ioctl(tun_fd, TUNSETIFF, (void *) &ifreq) != -1) { fprintf(stderr, "Opened %s\n", ifreq.ifr_name); fd_set_close_on_exec(tun_fd); return tun_fd; } if (errno != EBUSY) { warn("open_tun: ioctl[TUNSETIFF]"); return -1; } } else { for (i = 0; i < TUN_MAX_TRY; i++) { snprintf(ifreq.ifr_name, IFNAMSIZ, "dns%d", i); if (ioctl(tun_fd, TUNSETIFF, (void *) &ifreq) != -1) { fprintf(stderr, "Opened %s\n", ifreq.ifr_name); snprintf(if_name, sizeof(if_name), "dns%d", i); fd_set_close_on_exec(tun_fd); return tun_fd; } if (errno != EBUSY) { warn("open_tun: ioctl[TUNSETIFF]"); return -1; } } warn("open_tun: Couldn't set interface name"); } warn("error when opening tun"); return -1; } #elif WINDOWS32 static void get_device(char *device, int device_len, const char *wanted_dev) { LONG status; HKEY adapter_key; int index; index = 0; status = RegOpenKeyEx(HKEY_LOCAL_MACHINE, TAP_ADAPTER_KEY, 0, KEY_READ, &adapter_key); if (status != ERROR_SUCCESS) { warnx("Error opening registry key " TAP_ADAPTER_KEY); return; } while (TRUE) { char name[256]; char unit[256]; char component[256]; char cid_string[256] = KEY_COMPONENT_ID; HKEY device_key; DWORD datatype; DWORD len; /* Iterate through all adapter of this kind */ len = sizeof(name); status = RegEnumKeyEx(adapter_key, index, name, &len, NULL, NULL, NULL, NULL); if (status == ERROR_NO_MORE_ITEMS) { break; } else if (status != ERROR_SUCCESS) { warnx("Error enumerating subkeys of registry key " TAP_ADAPTER_KEY); break; } snprintf(unit, sizeof(unit), TAP_ADAPTER_KEY "\\%s", name); status = RegOpenKeyEx(HKEY_LOCAL_MACHINE, unit, 0, KEY_READ, &device_key); if (status != ERROR_SUCCESS) { warnx("Error opening registry key %s", unit); goto next; } /* Check component id */ len = sizeof(component); status = RegQueryValueEx(device_key, cid_string, NULL, &datatype, (LPBYTE)component, &len); if (status != ERROR_SUCCESS || datatype != REG_SZ) { goto next; } if (strncmp(TAP_VERSION_ID_0801, component, strlen(TAP_VERSION_ID_0801)) == 0 || strncmp(TAP_VERSION_ID_0901, component, strlen(TAP_VERSION_ID_0901)) == 0 || strncmp(TAP_VERSION_ID_0901_ROOT, component, strlen(TAP_VERSION_ID_0901_ROOT)) == 0) { /* We found a TAP32 device, get its NetCfgInstanceId */ char iid_string[256] = NET_CFG_INST_ID; status = RegQueryValueEx(device_key, iid_string, NULL, &datatype, (LPBYTE) device, (DWORD *) &device_len); if (status != ERROR_SUCCESS || datatype != REG_SZ) { warnx("Error reading registry key %s\\%s on TAP device", unit, iid_string); } else { /* Done getting GUID of TAP device, * now check if the name is the requested one */ if (wanted_dev) { char name[250]; get_name(name, sizeof(name), device); if (strncmp(name, wanted_dev, strlen(wanted_dev))) { /* Skip if name mismatch */ goto next; } } /* Get the if name */ get_name(if_name, sizeof(if_name), device); RegCloseKey(device_key); return; } } next: RegCloseKey(device_key); index++; } RegCloseKey(adapter_key); } static void get_name(char *ifname, int namelen, char *dev_name) { char path[256]; char name_str[256] = "Name"; LONG status; HKEY conn_key; DWORD len; DWORD datatype; memset(ifname, 0, namelen); snprintf(path, sizeof(path), NETWORK_KEY "\\%s\\Connection", dev_name); status = RegOpenKeyEx(HKEY_LOCAL_MACHINE, path, 0, KEY_READ, &conn_key); if (status != ERROR_SUCCESS) { fprintf(stderr, "Could not look up name of interface %s: error opening key\n", dev_name); RegCloseKey(conn_key); return; } len = namelen; status = RegQueryValueEx(conn_key, name_str, NULL, &datatype, (LPBYTE)ifname, &len); if (status != ERROR_SUCCESS || datatype != REG_SZ) { fprintf(stderr, "Could not look up name of interface %s: error reading value\n", dev_name); RegCloseKey(conn_key); return; } RegCloseKey(conn_key); } DWORD WINAPI tun_reader(LPVOID arg) { struct tun_data *tun = arg; char buf[64*1024]; int len; int res; OVERLAPPED olpd; int sock; sock = open_dns_from_host("127.0.0.1", 0, AF_INET, 0); olpd.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); while(TRUE) { olpd.Offset = 0; olpd.OffsetHigh = 0; res = ReadFile(tun->tun, buf, sizeof(buf), (LPDWORD) &len, &olpd); if (!res) { WaitForSingleObject(olpd.hEvent, INFINITE); res = GetOverlappedResult(dev_handle, &olpd, (LPDWORD) &len, FALSE); res = sendto(sock, buf, len, 0, (struct sockaddr*) &(tun->addr), tun->addrlen); } } return 0; } int open_tun(const char *tun_device) { char adapter[256]; char tapfile[512]; int tunfd; struct sockaddr_storage localsock; int localsock_len; memset(adapter, 0, sizeof(adapter)); memset(if_name, 0, sizeof(if_name)); get_device(adapter, sizeof(adapter), tun_device); if (strlen(adapter) == 0 || strlen(if_name) == 0) { if (tun_device) { warnx("No TAP adapters found. Try without -d."); } else { warnx("No TAP adapters found. Version 0801 and 0901 are supported."); } return -1; } fprintf(stderr, "Opening device %s\n", if_name); snprintf(tapfile, sizeof(tapfile), "%s%s.tap", TAP_DEVICE_SPACE, adapter); dev_handle = CreateFile(tapfile, GENERIC_WRITE | GENERIC_READ, 0, 0, OPEN_EXISTING, FILE_ATTRIBUTE_SYSTEM | FILE_FLAG_OVERLAPPED, NULL); if (dev_handle == INVALID_HANDLE_VALUE) { warnx("Could not open device!"); return -1; } /* Use a UDP connection to forward packets from tun, * so we can still use select() in main code. * A thread does blocking reads on tun device and * sends data as udp to this socket */ localsock_len = get_addr("127.0.0.1", 55353, AF_INET, 0, &localsock); tunfd = open_dns(&localsock, localsock_len); data.tun = dev_handle; memcpy(&(data.addr), &localsock, localsock_len); data.addrlen = localsock_len; CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)tun_reader, &data, 0, NULL); return tunfd; } #else /* BSD and friends */ #ifdef DARWIN /* Extract the device number from the name, if given. The value returned will * be suitable for sockaddr_ctl.sc_unit, which means 0 for auto-assign, or * (n + 1) for manual. */ static int utun_unit(const char *dev) { const char *unit_str = dev; int unit = 0; if (!dev) return -1; while (*unit_str != '\0' && !isdigit(*unit_str)) unit_str++; if (isdigit(*unit_str)) unit = strtol(unit_str, NULL, 10) + 1; return unit; } static int open_utun(const char *dev) { struct sockaddr_ctl addr; struct ctl_info info; char ifname[10]; socklen_t ifname_len = sizeof(ifname); int unit; int fd = -1; int err = 0; fd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL); if (fd < 0) { warn("open_utun: socket(PF_SYSTEM)"); return -1; } /* Look up the kernel controller ID for utun devices. */ bzero(&info, sizeof(info)); strncpy(info.ctl_name, UTUN_CONTROL_NAME, MAX_KCTL_NAME); err = ioctl(fd, CTLIOCGINFO, &info); if (err != 0) { warn("open_utun: ioctl(CTLIOCGINFO)"); close(fd); return -1; } /* Connecting to the socket creates the utun device. */ addr.sc_len = sizeof(addr); addr.sc_family = AF_SYSTEM; addr.ss_sysaddr = AF_SYS_CONTROL; addr.sc_id = info.ctl_id; unit = utun_unit(dev); if (unit < 0) { close(fd); return -1; } addr.sc_unit = unit; err = connect(fd, (struct sockaddr *)&addr, sizeof(addr)); if (err != 0) { warn("open_utun: connect"); close(fd); return -1; } /* Retrieve the assigned interface name. */ err = getsockopt(fd, SYSPROTO_CONTROL, UTUN_OPT_IFNAME, ifname, &ifname_len); if (err != 0) { warn("open_utun: getsockopt(UTUN_OPT_IFNAME)"); close(fd); return -1; } strncpy(if_name, ifname, sizeof(if_name)); fprintf(stderr, "Opened %s\n", ifname); fd_set_close_on_exec(fd); return fd; } #endif int open_tun(const char *tun_device) { int i; int tun_fd; char tun_name[50]; if (tun_device != NULL) { #ifdef DARWIN if (!strncmp(tun_device, "utun", 4)) { tun_fd = open_utun(tun_device); if (tun_fd >= 0) { return tun_fd; } } #endif snprintf(tun_name, sizeof(tun_name), "/dev/%s", tun_device); strncpy(if_name, tun_device, sizeof(if_name)); if_name[sizeof(if_name)-1] = '\0'; if ((tun_fd = open(tun_name, O_RDWR)) < 0) { warn("open_tun: %s", tun_name); return -1; } fprintf(stderr, "Opened %s\n", tun_name); fd_set_close_on_exec(tun_fd); return tun_fd; } else { for (i = 0; i < TUN_MAX_TRY; i++) { snprintf(tun_name, sizeof(tun_name), "/dev/tun%d", i); if ((tun_fd = open(tun_name, O_RDWR)) >= 0) { fprintf(stderr, "Opened %s\n", tun_name); snprintf(if_name, sizeof(if_name), "tun%d", i); fd_set_close_on_exec(tun_fd); return tun_fd; } if (errno == ENOENT) break; } #ifdef DARWIN fprintf(stderr, "No tun devices found, trying utun\n"); for (i = 0; i < TUN_MAX_TRY; i++) { snprintf(tun_name, sizeof(tun_name), "utun%d", i); tun_fd = open_utun(tun_name); if (tun_fd >= 0) { return tun_fd; } } #endif warn("open_tun: Failed to open tunneling device"); } return -1; } #endif void close_tun(int tun_fd) { if (tun_fd >= 0) close(tun_fd); } #ifdef WINDOWS32 int write_tun(int tun_fd, char *data, size_t len) { DWORD written; DWORD res; OVERLAPPED olpd; data += 4; len -= 4; olpd.Offset = 0; olpd.OffsetHigh = 0; olpd.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); res = WriteFile(dev_handle, data, len, &written, &olpd); if (!res && GetLastError() == ERROR_IO_PENDING) { WaitForSingleObject(olpd.hEvent, INFINITE); res = GetOverlappedResult(dev_handle, &olpd, &written, FALSE); if (written != len) { return -1; } } return 0; } ssize_t read_tun(int tun_fd, char *buf, size_t len) { int bytes; memset(buf, 0, 4); bytes = recv(tun_fd, buf + 4, len - 4, 0); if (bytes < 0) { return bytes; } else { return bytes + 4; } } #else static int tun_uses_header(void) { #if defined (FREEBSD) || defined (NETBSD) /* FreeBSD/NetBSD has no header */ return 0; #elif defined (DARWIN) /* Darwin tun has no header, Darwin utun does */ return !strncmp(if_name, "utun", 4); #else /* LINUX/OPENBSD */ return 1; #endif } int write_tun(int tun_fd, char *data, size_t len) { if (!tun_uses_header()) { data += 4; len -= 4; } else { #ifdef LINUX // Linux prefixes with 32 bits ethertype // 0x0800 for IPv4, 0x86DD for IPv6 data[0] = 0x00; data[1] = 0x00; data[2] = 0x08; data[3] = 0x00; #else /* OPENBSD and DARWIN(utun) */ // BSDs prefix with 32 bits address family // AF_INET for IPv4, AF_INET6 for IPv6 data[0] = 0x00; data[1] = 0x00; data[2] = 0x00; data[3] = 0x02; #endif } if (write(tun_fd, data, len) != len) { warn("write_tun"); return 1; } return 0; } ssize_t read_tun(int tun_fd, char *buf, size_t len) { if (!tun_uses_header()) { int bytes; memset(buf, 0, 4); bytes = read(tun_fd, buf + 4, len - 4); if (bytes < 0) { return bytes; } else { return bytes + 4; } } else { return read(tun_fd, buf, len); } } #endif int tun_setip(const char *ip, const char *other_ip, int netbits) { char cmdline[512]; int netmask; struct in_addr net; int i; #ifndef LINUX int r; #endif #ifdef WINDOWS32 DWORD status; DWORD ipdata[3]; struct in_addr addr; DWORD len; #else const char *display_ip; #ifndef LINUX struct in_addr netip; #endif #endif netmask = 0; for (i = 0; i < netbits; i++) { netmask = (netmask << 1) | 1; } netmask <<= (32 - netbits); net.s_addr = htonl(netmask); if (inet_addr(ip) == INADDR_NONE) { fprintf(stderr, "Invalid IP: %s!\n", ip); return 1; } #ifndef WINDOWS32 # ifdef FREEBSD display_ip = other_ip; /* FreeBSD wants other IP as second IP */ # else display_ip = ip; # endif snprintf(cmdline, sizeof(cmdline), IFCONFIGPATH "ifconfig %s %s %s netmask %s", if_name, ip, display_ip, inet_ntoa(net)); fprintf(stderr, "Setting IP of %s to %s\n", if_name, ip); #ifndef LINUX netip.s_addr = inet_addr(ip); netip.s_addr = netip.s_addr & net.s_addr; r = system(cmdline); if (r != 0) { return r; } else { snprintf(cmdline, sizeof(cmdline), ROUTEPATH "route add %s/%d %s", inet_ntoa(netip), netbits, ip); } fprintf(stderr, "Adding route %s/%d to %s\n", inet_ntoa(netip), netbits, ip); #endif return system(cmdline); #else /* WINDOWS32 */ /* Set device as connected */ fprintf(stderr, "Enabling interface '%s'\n", if_name); status = 1; r = DeviceIoControl(dev_handle, TAP_IOCTL_SET_MEDIA_STATUS, &status, sizeof(status), &status, sizeof(status), &len, NULL); if (!r) { fprintf(stderr, "Failed to enable interface\n"); return -1; } if (inet_aton(ip, &addr)) { ipdata[0] = (DWORD) addr.s_addr; /* local ip addr */ ipdata[1] = net.s_addr & ipdata[0]; /* network addr */ ipdata[2] = (DWORD) net.s_addr; /* netmask */ } else { return -1; } /* Tell ip/networkaddr/netmask to device for arp use */ r = DeviceIoControl(dev_handle, TAP_IOCTL_CONFIG_TUN, &ipdata, sizeof(ipdata), &ipdata, sizeof(ipdata), &len, NULL); if (!r) { fprintf(stderr, "Failed to set interface in TUN mode\n"); return -1; } /* use netsh to set ip address */ fprintf(stderr, "Setting IP of interface '%s' to %s (can take a few seconds)...\n", if_name, ip); snprintf(cmdline, sizeof(cmdline), "netsh interface ip set address \"%s\" static %s %s", if_name, ip, inet_ntoa(net)); return system(cmdline); #endif } int tun_setmtu(const unsigned mtu) { #ifndef WINDOWS32 char cmdline[512]; if (mtu > 200 && mtu <= 1500) { snprintf(cmdline, sizeof(cmdline), IFCONFIGPATH "ifconfig %s mtu %u", if_name, mtu); fprintf(stderr, "Setting MTU of %s to %u\n", if_name, mtu); return system(cmdline); } else { warn("MTU out of range: %u\n", mtu); } return 1; #else /* WINDOWS32 */ return 0; #endif }